Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers

نویسندگان

  • Alejandro Perdomo-Ortiz
  • Marcello Benedetti
  • John Realpe-Gómez
  • Rupak Biswas
چکیده

Alejandro Perdomo-Ortiz, 2, 3, 4, 5, ∗ Marcello Benedetti, 2, 4, 5 John Realpe-Gómez, 6, 7 and Rupak Biswas 8 Quantum Artificial Intelligence Lab., NASA Ames Research Center, Moffett Field, CA 94035, USA USRA Research Institute for Advanced Computer Science, Mountain View, CA 94043, USA Qubitera, LLC., Mountain View, CA 94041, USA Department of Computer Science, University College London, WC1E 6BT London, UK Cambridge Quantum Computing Limited, CB2 1UB Cambridge, UK SGT Inc., Greenbelt, MD 20770, USA Instituto de Matemáticas Aplicadas, Universidad de Cartagena, Boĺıvar 130001, Colombia Exploration Technology Directorate, NASA Ames Research Center, Moffett Field, CA 94035, USA (Dated: March 20, 2018)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means

One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...

متن کامل

Towards Quantum Machine Learning with Tensor Networks

Machine learning is a promising application of quantum computing, but challenges remain as near-term devices will have a limited number of physical qubits and high error rates. Motivated by the usefulness of tensor networks for machine learning in the classical context, we propose quantum computing approaches to both discriminative and generative learning, with circuits based on tree and matrix...

متن کامل

Machine Learning and Citizen Science: Opportunities and Challenges of Human-Computer Interaction

Background and Aim: In processing large data, scientists have to perform the tedious task of analyzing hefty bulk of data. Machine learning techniques are a potential solution to this problem. In citizen science, human and artificial intelligence may be unified to facilitate this effort. Considering the ambiguities in machine performance and management of user-generated data, this paper aims to...

متن کامل

Designing a Quantum Leadership Model in Secondary Schools Based on Data Theory

This study seeks to design a new and innovative model for school management using the data foundation method, a model that can be an effective aid in solving the problems and challenges facing school principals by using quantum leadership. Designing a quantum leadership model in secondary schools based on data theory is the main goal of this research and seeks to achieve a suitable model for ov...

متن کامل

Quantum-assisted Helmholtz machines: A quantum-classical deep learning framework for industrial datasets in near-term devices

Marcello Benedetti, 2, 3 John Realpe-Gómez, 4, 5 and Alejandro Perdomo-Ortiz 2, 3, ∗ Quantum Artificial Intelligence Lab., NASA Ames Research Center, Moffett Field, CA 94035, USA USRA Research Institute for Advanced Computer Science (RIACS), Mountain View CA 94043, USA Department of Computer Science, University College London, WC1E 6BT London, UK SGT Inc., Greenbelt, MD 20770, USA Instituto de ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1708.09757  شماره 

صفحات  -

تاریخ انتشار 2017